Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Itzia I. Padilla-Martínez, ${ }^{\text {a }}$ María Chaparro-Huerta, ${ }^{\text {a }}$ Francisco J. Martínez-Martínez, ${ }^{\text {a }}$ Herbert Höpfl ${ }^{\text {b }}$ and Efrén V. GarcíaBáez ${ }^{\text {a * }}$
${ }^{\text {a }}$ Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, DF 07340, Mexico, and ${ }^{\text {b }}$ Centro de Investigaciones Químicas, Universidad Autónoma de Morelos, Cuernavaca Morelos, Mexico

Correspondence e-mail:
vgarcia@acei.upibi.ipn.mx

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.058$
$w R$ factor $=0.124$
Data-to-parameter ratio $=12.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Diethyl N, N^{\prime}-m-phenylenedioxamate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$, crystallizes in the monoclinic space group, $C 2 / c . C_{2}$ symmetry is imposed on the molecule. The ethyl oxamate groups are twisted out of the aromatic ring plane by 34.53 (6) ${ }^{\circ}$ and both carbonyl groups are antiperiplanar. The intramolecular hydrogen-bonding pattern is depicted by a soft $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{O}^{\prime}$ three-centered hydrogen bond, and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions which form an $S(5) S(5) S(6) S(6)^{\prime} S(5)^{\prime} S(5)^{\prime}$ motif. The molecules are linked into $C(3)$ and $C(4)$ chain motifs, forming supramolecular layers in the ac plane.

Comment

The title compound, (I), forms monoclinic crystals ($C 2 / c, Z=$ 4). C_{2} symmetry is crystallographically imposed on the molecule; thus only one half molecule is present in the asymmetric unit. The bond lengths and angles are in the standard ranges, with a mean $\mathrm{C}-\mathrm{C}$ bond length of 1.384 (3) \AA (Table 1). The ethyl oxamate $-\mathrm{N}(\mathrm{H})-\mathrm{C}(\mathrm{O})-\mathrm{C}(\mathrm{O})-\mathrm{OCH}_{2} \mathrm{CH}_{3}$ group is almost planar, with an N5-C5-C6-O7 torsion angle of $170.2(2)^{\circ}$. Both carbonyl groups are antiperiplanar, with an O5-C5-C6-O6 torsion angle of 170.8 (2) ${ }^{\circ}$. The C5-C6 bond distance is almost exactly 1.541 (1) \AA (Dewar \& Schmeizing, 1968), the value usually assumed for a Csp ${ }^{3}-\mathrm{Csp}{ }^{3}$ single bond, while for the $\mathrm{Csp} p^{2}-\mathrm{Csp}{ }^{2}$ single bond, the average value from the literature (Allen et al., 1987) is 1.478 (12) \AA. This may be indicative of the absence of conjugation, in spite of the planarity of the oxamate system, but can be justified by steric hindrance; at $2.640(2) \AA$, the $\mathrm{O} 5 \cdots \mathrm{O} 7$ contact is markedly shorter than the sum of the van der Waals radii (3.04 \AA; Bondi, 1964). The two ethyl oxamate groups are

Figure 1
The molecular structure of the title compound, showing the atomlabelling scheme, the three-centered hydrogen-bonding interaction C $\mathrm{H} \cdots \mathrm{O}\left(\mathrm{O}^{\prime}\right)$ and the $\mathrm{H} 5 \cdots \mathrm{O} 6 \cdots \mathrm{H} 7 A$ hydrogen-bonding interactions. Displacement ellipsoids are drawn at the 20% probability level.

Received 16 April 2003

Accepted 9 May 2003
Online 16 May 2003
twisted by 34.53 (6) ${ }^{\circ}$ away from the aromatic ring mean plane (Fig. 2). These results contrast with those recently reported for the 1,2-isomer, viz. N, N^{\prime}-o-phenylenedioxamate (Martin et al., 2002). The analysis of this latter compound reveals a molecule with one ethyl oxamate group synperiplanar and the other antiperiplanar, both twisted with respect to the benzene ring as a result of steric interactions. The above-mentioned conformation allows the formation of the intramolecular three-centered hydrogen-bonding interaction (THB) C1$\mathrm{H} \cdots \mathrm{O} 5\left(\mathrm{O}^{\prime}\right)$. Selected bond distances and torsion angles are listed in Table 2.

(I)

According to graph-set notation (Bernstein et al., 1995), two adjacent $\mathrm{S}(6)$ rings are formed. A particular feature of this interaction is the $\mathrm{O} 5 \cdots \mathrm{H} 1 \cdots 5^{\prime}$ angle of $142(2)^{\circ}$, and the sum of the angles at the donor is 360°, as required by the crystallographic symmetry (Fig. 1). The H1…O5 distance [2.45 (1) \AA] is shorter than the mean value reported for similar systems [2.553 (4) Aं; Steiner, 2002]; however, it is larger than the values found for other intramolecular THB involving $\mathrm{N}-$ H as donor [2.09 (2) £ं; Padilla-Martínez et al., 2001]. These results reveal the relative weakness of the soft $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction (Vargas et al., 2000), compared with the hard N$\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interaction (Desiraju, 1996) involving THB systems. The intramolecular hydrogen-bonding interactions $\mathrm{N} 5-\mathrm{H} 5 \cdots \mathrm{O} 6$ and $\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 6$ (Table 2) complete the overall hydrogen-bonding scheme, which can be depicted as a set of six hydrogen-bonded rings forming an $S(5) S(5) S(6) S(6)^{\prime} S(5)^{\prime} S(5)^{\prime}$ motif. It is noteworthy that this last interaction should have some importance in determining

Figure 2

Projection of the molecular structure, showing the twist.

Figure 3
(a) Part of the packing of the title compound, showing the formation of $C(3)$ and $C(4)$ chain motifs along the [010] direction $\left(R_{2}^{2}(11)[C(3) C(4)]\right)$; (b) three-dimensional view of the supramolecular layers of the title compound.
the location of the ethyl group in the oxamate plane. Supramolecular layers of the title molecule are formed in the ac plane due to $\mathrm{N} 5-\mathrm{H} \cdots \mathrm{O}^{\mathrm{i}}[2.17$ (2) \AA A $]$ and $\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{O} 7^{\mathrm{ii}}$ [2.49 (2) Å] intermolecular hydrogen bonds (see Table 2 for symmetry codes), which lead to $C(4)$ and $C(3)$ chains motifs, respectively (Fig. 3a), whose topological motif corresponds to a ring graph-set descriptor $R_{2}^{2}(11)[C(3) C(4)]$ (Bernstein et al., 1995). These parallel chains are generated by translation along the [010] direction (Fig. 3b) and are formed because of the close proximity of alternate acceptors. There are no hydrogen bonds between these layers.

Experimental

The compound was prepared from $2.3 \mathrm{ml}(20.4 \mathrm{mmol})$ of ethyl chlorooxoacetate and $1.0 \mathrm{~g}(9.3 \mathrm{mmol})$ of 1,3 -diaminobenzene, according to reported procedures (Martínez-Martínez et al., 1998), to yield $20.0 \mathrm{~g}(70 \%)$ of a pale yellow solid (m.p. $425-427 \mathrm{~K})$. IR (KBr , cm^{-1}): $3349(\mathrm{NH}), 1699(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (300.08 MHz , DMSO- d_{6}, p.p.m.): $10.8(s, 2 \mathrm{H}, \mathrm{NH}), 8.2(s, 1 \mathrm{H}), 7.5(d, 2 \mathrm{H}), 7.3(t, 1 \mathrm{H}), 4.3(q$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.3\left(t, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (75.46 MHz , DMSO- d_{6}, p.p.m.): 161.3 (COO), $156.4(\mathrm{CON}), 138.3\left(\mathrm{C}_{i}\right), 129.6\left(\mathrm{C}_{m}\right), 117.7\left(2 \mathrm{C}_{o}\right), 113.5$ $\left(\mathrm{C}_{o}\right), 63.0\left(\mathrm{CH}_{2}\right), 14.5\left(\mathrm{CH}_{3}\right)$. Crystals suitable for X-ray analysis were obtained after slow crystallization from acetone.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}$
$M_{r}=308.29$
Monoclinic, C2/c
$a=25.086$ (5) A
$b=7.1225$ (14) \AA
$c=8.2529(17) \AA$
$\beta=104.870(3)^{\circ}$
$V=1425.2(5) \AA^{3}$
$Z=4$

Data collection

Bruker SMART area-detector diffractometer φ and ω scans
5869 measured reflections
1607 independent reflections 1464 reflections with $I>2 \sigma(I)$
$D_{x}=1.437 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 600 reflections
$\theta=20.0-1.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Prism, colourless
$0.32 \times 0.21 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\mathrm{int}}=0.032 \\
& \theta_{\max }=27.5^{\circ} \\
& h=-31 \rightarrow 32 \\
& k=-8 \rightarrow 9 \\
& l=-10 \rightarrow 10
\end{aligned}
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0415 P)^{2} \\
&+2.0276 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999).

The authors gratefully acknowledge financial support from CGPI-IPN (grant 5201) and CONACYT-México (grant 33438-E).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Winsconsin, USA.
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.
Dewar, M. J. S. \& Schmeizing, H. N. (1968). Tetrahedron, 11, 96-120.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Martin, S., Beitia, J., Ugalde, M., Vitoria, P. \& Cortes, R. (2002). Acta Cryst. E58, o913-o915.
Martínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuex, M. \& Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401-406.

Padilla-Martínez, I. I., Martínez-Martínez, F. J., García-Báez, E. V., TorresValencia, J. M., Rojas-Lima, S. \& Höpfl, H. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1817-1823.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steiner, T. (2002). Angew. Chem. Int. Ed. Engl. 41, 48-76.
Vargas, R., Garza, J., Dixon, D. A. \& Hay, B. P. (2000). J. Am. Chem. Soc. 122, 4750-4755.

